v. 2 n. 3 (2020): PURIQ (setembro-dezembro)
Artigos

Propriedades funcionais dos produtos tradicionais liofilizados e secos ao sol (Oxalis tuberosa Molina) e olluco (Ullucus tuberosus Caldas): Uma revisão

Roberto Carlos Chuquilín Goicochea
Universidad Nacional de Huancavelica
Biografia
Mónica Carolim Martínez Laurente
Universidad Nacional de Huancavelica
Biografia
Jesús Teodoro Rodrigo-Chumbes
Universidad Nacional de Huancavelica
Biografia

Publicado 2020-08-08

Palavras-chave

  • Capacidade antioxidante,
  • antocianinas,
  • betalaninas,
  • octatina,
  • amido,
  • kaya,
  • chullcce
  • ...Mais
    Menos

Como Citar

Chuquilín Goicochea, R. C., Martínez Laurente, M. C., & Rodrigo-Chumbes, J. T. (2020). Propriedades funcionais dos produtos tradicionais liofilizados e secos ao sol (Oxalis tuberosa Molina) e olluco (Ullucus tuberosus Caldas): Uma revisão. Puriq, 2(3), 247–263. https://doi.org/10.37073/puriq.2.3.100

Métricas alternativas

Resumo

O objetivo era compreender a importância de dois tubérculos orgânicos andinos, Oxalis tuberosa Molina e Ullucus tuberosus Caldas, em termos de seus componentes benéficos para a saúde humana, bem como dar-lhes valor agregado através de uma técnica ancestral, comumente chamada "chuño", conhecida como caya e chullce na região de Huancavelica. As bases de dados Science direct, Taylor & Francis, Wiley, PubMed, Scielo e Alicia, com 20 anos de idade, foram revisadas. Os resultados mais relevantes foram sistematizados em tabelas e analisados para destacar as qualidades que ambos os tubérculos têm como produtos frescos e as possibilidades que podem ter quando convertidos em produtos agroindustriais que mantêm suas propriedades funcionais.

Downloads

Não há dados estatísticos.

Referências

  1. Acurio Arcos, L. P., & Conrado Mora, K. M. (2018). Determinación de propiedades térmicas de oca (Oxalis tuberosa), jícama (Smallanthus sonchifolius), mashua (Tropaeolum tuberosum) y camote (Ipomoea batatas) (Universidad Técnica de Ambato). Recuperado de https://repositorio.uta.edu.ec/handle/123456789/29060
  2. Albihn, P. B. E., & Savage, G. P. (2001). The bioavailability of oxalate from oca (Oxalis tuberosa). Journal of Urology, 166(2), 420–422. https://doi.org/10.1016/S0022-5347(05)65956-3
  3. Alcalde-Eon, C., Saavedra, G., Pascual-Teresa, S. De, & Rivas-Gonzalo, J. C. (2004). Liquid chromatography-mass spectrometry identification of anthocyanins of isla oca (Oxalis tuberosa, Mol.) tubers. Journal of Chromatography A, 1054(1–2), 211–215. https://doi.org/10.1016/j.chroma.2004.08.074
  4. Bimbo, F., Bonanno, A., Nocella, G., Viscecchia, R., Nardone, G., De Devitiis, B., & Carlucci, D. (2017, June 1). Consumers’ acceptance and preferences for nutrition-modified and functional dairy products: A systematic review. Appetite, Vol. 113, pp. 141–154. https://doi.org/10.1016/j.appet.2017.02.031
  5. Busch, J., Sangketkit, C., Savage, G., Martin, R., Halloy, S., & Deo, B. (2000). Nutritional analysis and sensory evaluation of ulluco (Ullucus tuberosus Loz) grown in New Zealand. Journal of the Science of Food and Agriculture, 80(15), 2232–2240. Retrieved from https://www.scopus.com/record/display.uri?eid=2-s2.0-0034523209&origin=inward
  6. Campos, D., Chirinos, R., Gálvez Ranilla, L., & Pedreschi, R. (2018). Bioactive Potential of Andean Fruits, Seeds, and Tubers. In Advances in Food and Nutrition Research (Vol. 84, pp. 287–343). https://doi.org/10.1016/bs.afnr.2017.12.005
  7. Campos, D., Noratto, G., Chirinos, R., Arbizu, C., Roca, W., & Cisneros-Zevallos, L. (2006). Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavón), Oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). Journal of the Science of Food and Agriculture, 86(10), 1481–1488. https://doi.org/10.1002/jsfa.2529
  8. Carvalho, A. de O., & Gomes, V. M. (2009, May). Plant defensins-Prospects for the biological functions and biotechnological properties. Peptides, Vol. 30, pp. 1007–1020. https://doi.org/10.1016/j.peptides.2009.01.018
  9. Cecasem. (2010). Elaboración de kaya de oca. Recuperado de https://www.youtube.com/watch?v=skB83XVm5so
  10. Cejudo-Bastante, M. J., Hurtado, N., Mosquera, N., & Heredia, F. J. (2014). Potential use of new Colombian sources of betalains. Color stability of ulluco (Ullucus tuberosus) extracts under different pH and thermal conditions. Food Research International, 64, 465–471. https://doi.org/10.1016/j.foodres.2014.07.036
  11. Chen, Y. F., Singh, J., Midgley, J., & Archer, R. (2020). Influence of time-temperature cycles on potato starch retrogradation in tuber and starch digestion in vitro. Food Hydrocolloids, 98, 105240. https://doi.org/10.1016/j.foodhyd.2019.105240
  12. Chirinos, R., Betalleluz-Pallardel, I., Huamán, A., Arbizu, C., Pedreschi, R., & Campos, D. (2009). HPLC-DAD characterisation of phenolic compounds from Andean oca (Oxalis tuberosa Mol.) tubers and their contribution to the antioxidant capacity. Food Chemistry, 113(4), 1243–1251. https://doi.org/10.1016/j.foodchem.2008.08.015
  13. Chirinos, R., Pedreschi, R., Rogez, H., Larondelle, Y., & Campos, D. (2013). Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Industrial Crops and Products, 47, 145–152. https://doi.org/10.1016/j.indcrop.2013.02.025
  14. Cho, E. J., Yokozawa, T., Rhyu, D. Y., Kim, S. C., Shibahara, N., & Park, J. C. (2003). Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl-2-picrylhydrazyl radical. Phytomedicine, 10(6–7), 544–551. https://doi.org/10.1078/094471103322331520
  15. Christiansen, J. (1977). The utilization of bitter potatoes to improve food production in high altitude of the tropics. Cornell University.
  16. Cortés, M., Herrera, E., & Rodríguez, E. (2015). Optimización experimental del proceso de liofilización de uchuva adicionada con componentes activos por impregnación al vacío. Vitae, 22(1), 47–56. Recuperado de https://www.redalyc.org/pdf/1698/169840731006.pdf
  17. de Haan, S., Burgos, G., Arcos, J., Ccanto, R., Scurrah, M., Salas, E., & Bonierbale, M. (2010). Traditional Processing of Black and White Chuño in the Peruvian Andes: Regional Variants and Effect on the Mineral Content of Native Potato Cultivars. Economic Botany, 64(3), 217–234. https://doi.org/10.1007/s12231-010-9128-x
  18. Dini, A., Rastrelli, L., Saturnino, P., & Schettino, O. (1991). [Minor components in food plants--II. Triterpenoid saponins from Ullucus tuberosus]. Bollettino della Societa italiana di biologia sperimentale, 67(12), 1059–1065.
  19. Espín, S, Brito, B., Villacrés, E., Rubio, A., Nieto, C., & Grijalva, J. (2001). Composición química, valor nutricional y usos potenciales de siete especies de raíces y tubérculos andinos. Acta Científica Ecuatoriana, 7(1), 49.
  20. Espín, Susana, Villacrés, E., & Brito, B. (2014). Caracterización Físico-Química, Nutricional y Funcional de Raíces y Tubérculos Andinos. In Raíces y tubérculos andinos (pp. 13–23). Recuperado de http://cipotato.org/wp-content/uploads/2014/06/RTAs_Ecuador_04.pdf
  21. Euromonitor. (2016). New Approaches to Wellness and Global Market Impact. Euromonitor Internacional. Recuperado de https://www.euromonitor.com/new-approaches-to-wellness-and-global-market-impact/report
  22. Flores, T., Alape-Girón, A., Flores-Díaz, M., & Flores, H. E. (2002). Ocatin. A novel tuber storage protein from the Andean tuber crop oca with antibacterial and antifungal activities. Plant Physiology, 128(4), 1291–1302. https://doi.org/10.1104/pp.010541
  23. Gandía-Herrero, F., Escribano, J., & García-Carmona, F. (2016). Biological Activities of Plant Pigments Betalains. Critical Reviews in Food Science and Nutrition, 56(6), 937–945. https://doi.org/10.1080/10408398.2012.740103
  24. Giusti, M., Polit, M. F., Ayvaz, H., Tay, D., & Manrique, I. (2014). Characterization and Quantitation of Anthocyanins and Other Phenolics in Native Andean Potatoes. Journal of Agricultural and Food Chemistry, 62(19), 4408–4416. https://doi.org/10.1021/jf500655n
  25. Gross, R., Koch, F., Malaga, I., de Miranda, A. F., Schoeneberger, H., & Trugo, L. C. (1989). Chemical composition and protein quality of some local Andean food sources. Food Chemistry, 34(1), 25–34. https://doi.org/10.1016/0308-8146(89)90030-7
  26. Jung, M. J., Chung, H. Y., Choi, J. H., & Choi, J. S. (2003). Antioxidant Principles from the Needles of Red Pine, Pinus densiflora. Phytotherapy Research, 17(9), 1064–1068. https://doi.org/10.1002/ptr.1302
  27. Keleman Saxena, A., Cadima Fuentes, X., Gonzales Herbas, R., & Humphries, D. L. (2016). Indigenous Food Systems and Climate Change: Impacts of Climatic Shifts on the Production and Processing of Native and Traditional Crops in the Bolivian Andes. Frontiers in Public Health, 4(March), 1–16. https://doi.org/10.3389/fpubh.2016.00020
  28. Kim, H. R., Choi, S. J., Choi, H. D., Park, C. S., & Moon, T. W. (2020). Amylosucrase-modified waxy potato starches recrystallized with amylose: The role of amylopectin chain length in formation of low-digestible fractions. Food Chemistry, 318, 126490. https://doi.org/10.1016/j.foodchem.2020.126490
  29. King, R. (1988). Mejoramiento de cultivos andinos, papa amarga, olluco, mashua y oca. Programa Interinstitucional de Papa.
  30. Kraus, A., Annunziata, A., & Vecchio, R. (2017). Sociodemographic Factors Differentiating the Consumer and the Motivations for Functional Food Consumption. Journal of the American College of Nutrition, 36(2), 116–126. https://doi.org/10.1080/07315724.2016.1228489
  31. Leterme, P., Buldgen, A., Estrada, F., & Londoño, A. M. (2006). Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chemistry, 95(4), 644–652. https://doi.org/10.1016/j.foodchem.2005.02.003
  32. Manach, C., Milenkovic, D., Van de Wiele, T., Rodriguez-Mateos, A., de Roos, B., Garcia-Conesa, M. T., … Morand, C. (2017, June 1). Addressing the inter-individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Molecular Nutrition and Food Research, Vol. 61. https://doi.org/10.1002/mnfr.201600557
  33. Márquez Mendoza, H. C. (2019). Composición nutricional y de mucílago de tres variedades de olluco (Ullucus tuberosus Loz.) para la obtención de chuño de olluco en el distrito de Santo Tomás - Cusco. Recuperado de http://repositorio.unsaac.edu.pe/bitstream/handle/UNSAAC/3694/253T20190059_TC.pdf?sequence=1&isAllowed=y
  34. Mejía Lotero, F. M., Salcedo Gil, J. E., Vargas Londoño, S., Serna Jiménez, J. A., Torres Valenzuela, L. S., Mejía Lotero, F. M., … Torres Valenzuela, L. S. (2018). Capacidad antioxidante y antimicrobiana de tubérculos andinos (Tropaeolum tuberosum y Ullucus tuberosus). Revista U.D.C.A Actualidad & Divulgación Científica, 21(2), 449–456. https://doi.org/10.31910/rudca.v21.n2.2018.1083
  35. Montesano, D., Rocchetti, G., Putnik, P., & Lucini, L. (2018, August 1). Bioactive profile of pumpkin: an overview on terpenoids and their health-promoting properties. Current Opinion in Food Science, Vol. 22, pp. 81–87. https://doi.org/10.1016/j.cofs.2018.02.003
  36. Morillo, A. C., Morillo, Y., & Leguizamo, M. F. (2019). Caracterización morfológica y molecular de Oxalis tuberosa Mol. en el departamento de Boyacá. Rev. Colomb. Biotecnol, 21(1), 18–28. https://doi.org/10.15446/rev.colomb.biote.v21n1.57356
  37. Ng, T. B., Liu, F., Lu, Y., Cheng, C. H. K., & Wang, Z. (2003). Antioxidant activity of compounds from the medicinal herb Aster tataricus. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 136(2), 109–115. https://doi.org/10.1016/S1532-0456(03)00170-4
  38. Pacheco, M. T., Escribano-Bailón, M. T., Moreno, F. J., Villamiel, M., & Dueñas, M. (2019). Determination by HPLC-DAD-ESI/MSn of phenolic compounds in Andean tubers grown in Ecuador. Journal of Food Composition and Analysis, 84, 103258. https://doi.org/10.1016/j.jfca.2019.103258
  39. Pacheco, M. T., Hernández-Hernández, O., Moreno, F. J., & Villamiel, M. (2020). Andean tubers grown in Ecuador: New sources of functional ingredients. Food Bioscience, 35, 100601. https://doi.org/10.1016/j.fbio.2020.100601
  40. Padayachee, A., Day, L., Howell, K., & Gidley, M. J. (2017). Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Critical Reviews in Food Science and Nutrition, 57(1), 59–81. https://doi.org/10.1080/10408398.2013.850652
  41. Paliwal, C., Ghosh, T., George, B., Pancha, I., Maurya, R., Chokshi, K., … Mishra, S. (2016). Microalgal carotenoids: Potential nutraceutical compounds with chemotaxonomic importance. Algal Research, 15, 24–31. https://doi.org/10.1016/j.algal.2016.01.017
  42. Peñarrieta, M., Alvarado, A., ?kessonb, B., & Bergenståhlc, B. (2005). Total antioxidant capacity in andean food species from Bolivia. Revista Boliviana de Química, 22(1), 89–93. Recuperado de http://www.scielo.org.bo/scielo.php?pid=S0250-54602005000100014&script=sci_arttext&tlng=es
  43. Peñarrieta, M., Salluca, T., Tejeda, L., Alvarado, A., & Bergenståhl, B. (2011). Changes in phenolic antioxidants during chuño production (traditional Andean freeze and sun-dried potato). Journal of Food Composition and Analysis, 24(4–5), 580–587. https://doi.org/10.1016/j.jfca.2010.10.006
  44. Puhakka, R., Valve, R., & Sinkkonen, A. (2018). Older consumers’ perceptions of functional foods and non-edible health-enhancing innovations. International Journal of Consumer Studies, 42(1), 111–119. https://doi.org/10.1111/ijcs.12400
  45. Salas-Valerio, W., Solano-Cornejo, M., Zelada-Bazán, M., & Vidaurre-Ruiz, J. (2019). Three-dimensional modeling of heat transfer during freezing of suspended and in-contact-with-a-surface yellow potatoes and ullucus. Journal of Food Process Engineering, 42(6), 1–10. https://doi.org/10.1111/jfpe.13174
  46. Sellappan, S., Akoh, C. C., & Krewer, G. (2002). Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. Journal of Agricultural and Food Chemistry, 50(8), 2432–2438. https://doi.org/10.1021/jf011097r
  47. Sreeramulu, D., & Raghunath, M. (2010). Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Research International, 43(4), 1017–1020. https://doi.org/10.1016/j.foodres.2010.01.009
  48. Svenson, J., Smallfield, B. M., Joyce, N. I., Sansom, C. E., & Perry, N. B. (2008). Betalains in red and yellow varieties of the andean tuber crop ulluco (Ullucus tuberosus). Journal of Agricultural and Food Chemistry, 56(17), 7730–7737. https://doi.org/10.1021/jf8012053
  49. Tapia, M. (1990). Cultivos andinos subexplotados y su aporte a la alimentación. FAO.
  50. Valcárcel-Yamani, B., Rondán-Sanabria, G. G., & Finardi-Filho, F. (2013). The physical, chemical and functional characterization of starches from andean tubers: Oca (Oxalis tuberosa molina), olluco (Ullucus tuberosus caldas) and mashua (Tropaeolum tuberosum ruiz & pavón). Brazilian Journal of Pharmaceutical Sciences, 49(3), 453–464. https://doi.org/10.1590/S1984-82502013000300007
  51. Vera, N. G., Espino Manzano, S. O., & Hernandez, H. M. H. (2018). Use of Oxalis tuberosa in Gluten-free Baked Goods Manufacture. In Alternative and Replacement Foods (Vol. 17). https://doi.org/10.1016/B978-0-12-811446-9.00006-X
  52. Werge, R. W. (1979). Potato processing in the central highlands of peru. Ecology of Food and Nutrition, 7(4), 229–234. https://doi.org/10.1080/03670244.1979.9990534
  53. Zhu, F., & Cui, R. (2019). Comparison of molecular structure of oca (Oxalis tuberosa), potato, and maize starches. Food Chemistry, 296, 116–122. https://doi.org/10.1016/j.foodchem.2019.05.192