Artigos
Produção de etanol por digestão de resíduos lignocelulósicos devido a fungos do solo agrícola na cidade de Lima.
Publicado 2021-01-04
Palavras-chave
- Atividade da celulase,
- bioetanol,
- Penicillium,
- Fusarium,
- Aspergillus
Como Citar
Delgado Olivares, L. G., & Salas Asencios, R. (2021). Produção de etanol por digestão de resíduos lignocelulósicos devido a fungos do solo agrícola na cidade de Lima. Puriq, 3(1), 165–174. https://doi.org/10.37073/puriq.3.1.148
Copyright (c) 2021 Leslie Giovana Delgado Olivares, Ramses Salas Asencios
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Métricas alternativas
Resumo
Cepas fúngicas com atividade de celulase foram isoladas de amostras de solo agrícola. Os fungos isolados pertenciam aos gêneros Aspergillus, Penicillium e Fusarium, mostrando diferentes rendimentos na produção de glicose. Os fungos com maior capacidade de digestão de celulose pertenciam aos gêneros Penicillium e Fusarium, permitindo um maior rendimento em termos de produção de etanol a partir da fermentação do produto de digestão com levedura de panificação.
Downloads
Não há dados estatísticos.
Referências
- Branco, R.H.R., Serafim, L.S. y Xavier, A.M.R.B. (2019). Second Generation Bioethanol Production: On the Use of Pulp and Paper Industry Wastes as Feedstock. Fermentation, 5, 4; doi:10.3390/fermentation5010004.
- Castro-Martínez C., Beltrán-Arredondo L.I. y Ortiz-Ojeda J.C. (2012). Producción de biodiesel y bioetanol: ¿una alternativa sustentable a la crisis energética?. Ra Ximhai, 8(3), 93 – 100.
- Chandel, A.K. y Singh, O.V. (2011). Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘Biofuel’. Appl Microbiol Biotechnol, 89, 1289–1303. doi: 10.1007/s00253-010-3057-6
- Cragg S.M., Beckham G.T., Bruce N.C., Bugg T.D.H., Distel D.L., Dupree P., Etxabe A.G., Goodell B.S., Jellison J., McGeehan J.E., McQueen-Mason S.J., Schnorr K., Walton P.H., Watts J.E.M. y Zimmer M. (2015). Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology, 29, 108 – 119. http://dx.doi.org/10.1016/j.cbpa.2015.10.018.
- Doolotkeldieva T.D. y Bobusheva S.T. (2011). Screening of Wild-Type Fungal Isolates for Cellulolytic Activity. Microbiology Insights, 4, 1 – 10. https://journals.sagepub.com/doi/pdf/10.4137/MBI.S6418.
- Drissen R.E.T.R.H., Maas W., Tramper, J., y Beeftink, H.H. (2009). Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation. Biocatalysis and Biotransformation, 27(1), 27 – 35. https://doi.org/10.1080/10242420802564358.
- Ekundayo, T. y Juwon, A. (2015). Isolation and Identification of Cellulytic Fungi from Agrowastes and Sawmill Soils. British Biotechnology Journal, 7, 147 - 159. DOI: 10.9734/BBJ/2015/17575.
- Guzmán A.M., Zambrano D.E., Rondón A.J., Laurencio M., Pérez M., León R. y Rivera R. (2014). Aislamiento, selección y caracterización de hongos celulásicos a partir de muestras de suelo en Manabí-Ecuador. Revista de la Facultad de Ciencias Agrarias de la Universidad de Cuyo, 46(2), 177 – 189. http://www.redalyc.org/articulo.oa?id=382837658004.
- Hussain A., Shrivastav A., Jain S.K., Baghel R.K., Rani S. y Agrawal M.K. (2012). Cellulolytic Enzymatic Activity of Soft Rot Filamentous Fungi Paecilomyces variotii. Advances in Bioresearch, 3(3), 10 – 17.
- INS y MINSA. (2007). Manual de procedimientos y técnicas de laboratorio para la identificación de los principales hongos oportunistas causantes de micosis humana. Nº 44. Lima, Perú.
- Kim, S. y Dale, B.E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 26, 361 – 375. https://doi.org/10.1016/j.biombioe.2003.08.002.
- Kurambhatti, C.V., Kumar, D., Rausch, K.D., Tumbleson, M.E. y Singh, V. (2018). Ethanol Production from Corn Fiber Separated after Liquefaction in the Dry Grind Process. Energies, 11, 2921; doi:10.3390/en11112921.
- Matsakas, L. y Christakopoulos, P. (2015). Ethanol Production from Enzymatically Treated Dried Food Waste Using Enzymes Produced On-Site. Sustainability, 7, 1446-1458. DOI:10.3390/su7021446.
- Mamma, D., Kourtoglou, E., y Christakopoulos, P. (2008). Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresource Technology, 99, 2373–2383. DOI:10.1016/j.biortech.2007.05.018.
- Mikán, J. y Castellanos, E. (2004). Screening para el aislamiento y caracterización de microorganismos y enzimas potencialmente útiles para la degradación de celulosas y hemicelulosas. Revista Colombiana de Biotecnología, 6 (1), 58-71.
- Nandana, G., Sridevi, A. y Narasimha, G. (2013). Screening and production of cellulase by fungal culture isolated from soil contaminated with cattle dung. Biotechnology India (BTAIJ), 7(3), 117 – 120.
- Oliveira, L.A., Porto, L.F.A., y Tambourgi, E.B. (2006). Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from diff erent agricultural wastes. Bioresource Technology, 97(6), 862-867. DOI:10.1016/j.biortech.2005.04.017.
- Ortiz, M. y Uribe, D. (2010). Determinación de la actividad lignocelulásica en sustrato natural de aislamientos fúngicos obtenidos de sabanas de pastoreo y de bosque secundario de sabana inundable tropical. Ciencias del Suelo, 28 (2), 169-180.
- Priyanka P., Yuvraj C, Farha S. y Aranganathan V. (2017). Isolation of cellulose degrading fungi from soil and optimization for cellulase production using Carboxy Methyl Cellulose. International Journal Of Life Science & Pharma Research, 7(1), L-56 – L-60. http://www.ijlpr.com/admin/php/uploads/312_pdf.pdf.
- Procop, G.W., Church, D.L., Hall, G.S., Janda, W.M., Koneman, E.W., Schreckenberger, P.C., y Woods, G.L. (2017). Koneman. Diagnóstico microbiológico, 7ª edición. Buenos Aires Editorial Médica Panamericana.
- Rodríguez-Guerra, A, Soria, C.A., Barnes, C.W., Ordóñez, M.E. y Salazar, A. (2012). Identificación y evaluación de algunos hongos con actividad celulásica aislados en Ecuador. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 33(1), 65. DOI: 10.26807/remcb.v33i1-2.224
- Sánchez A.M., Gutiérrez Morales A.I., Muñoz Hernández J.A. y Rivera Barrero C.A. (2010). Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos. Revista Tumbaga, 1(5), 61 - 91.
- Sari S.L.A. Setyaningsih R. y Wibowo N.F.A. (2017). Isolation and screening of cellulolytic fungi from Salacca zalacca leaf litter. Biodiversitas, 18(3), 1282 – 1288. DOI:10.13057/biodiv/d180355.
- Sato Y., Fukuda Y., Zhou Y. y Mikami S. (2010). Contribution of ethanol-tolerant xylanase G2 from Aspergillus oryzae on Japanese sake brewing. Journal of Bioscience and Bioengineering, 110(6), 679 – 683. Doi: 10.1016/j.jbiosc.2010.07.015.
- Sivaramanan, S. (2014). Isolation of Cellulolytic Fungi and their Degradation on Cellulosic Agricultural Wastes. Journal of Academia and Industrial Research (JAIR), 2(8), 458 – 463. DOI:10.13140/2.1.3633.4080.
- Sociedad Española de Microbiología. (2014). Clave dicotómica para la identificación de hongos aislados sistemáticamente en ambientes mediterráneos. Revista Semáforo, número 57. https://www.semicrobiologia.org/storage/secciones/publicaciones/semaforo/57/articulos/30_Clave.pdf
- Vázquez-Montoya, E.L., Castro-Ochoa, L.D., Maldonado-Mendoza, I.E., Luna-Suárez, S. y Castro-Martínez, C. (2020). Moringa straw as cellulase production inducer and cellulolytic fungi source. Rev. Argent. Microbiol., 52(1), 4 – 12. DOI: 10.1016/j.ram.2019.02.005.